What Is Universe???

The universe is defined as everything that physically exists: the entirety of space and time, all forms of matter, energy and momentum, and the physical laws and constants that govern them. However, the term universe may be used in slightly different contextual senses, denoting such concepts as the cosmos, the world or Nature.

Tuesday, February 17, 2009

Ultimate fate of the universe

The ultimate fate of the universe is a topic in physical cosmology. Many possible fates are predicted by rival scientific theories, including futures of both finite and infinite duration. Once the notion that the universe started with a Big Bang became accepted by a consensus of scientists, the ultimate fate of the universe became a valid cosmological question, one depending upon the physical properties of the mass/energy in the universe, its average density, and the rate of expansion. By extension, the fate of the universe is also a significant theme in science fiction.

Theory

The theoretical scientific exploration of the ultimate fate of the universe became possible with Albert Einstein's 1916 theory of general relativity. General relativity can be employed to describe the universe on the largest possible scale. There are many possible solutions to the equations of general relativity, and each solution implies a possible ultimate fate of the universe. Alexander Friedman proposed a number of such solutions in 1922. In some of these the universe has been expanding from an initial singularity; this is, essentially, the Big Bang.

Observation
Observational evidence was not long in coming. In 1931, Edwin Hubble published his conclusion, based on his observations of Cepheid variable stars in distant galaxies, that the universe was expanding. From then on, the beginning of the universe and its possible end have been the subjects of serious scientific investigation.

Big Bang and Steady state theories

In 1931, Georges-Henri Lemaître set out a theory that has since come to be called the Big Bang theory of the origin of the universe. In 1948, Fred Hoyle set out his opposing steady state theory in which the universe continually expanded but remained statistically unchanged as new matter is constantly created. These two theories were active contenders until the 1965 discovery, by Arno Penzias and Robert Wilson, of the cosmic microwave background radiation, a fact that is a straightforward prediction of the Big Bang theory, and one that the Steady State theory cannot account for. The Big Bang theory immediately became the most widely held view of the origin of the universe.

Cosmological constant

When Einstein formulated general relativity, he and his contemporaries believed in a static universe. When Einstein found that his equations could easily be solved in such a way as to allow the universe to be expanding now, and to contract in the far future, he added to those equations what he called a cosmological constant, essentially a constant energy density unaffected by any expansion or contraction, whose role was to offset the effect of gravity on the universe as a whole in such a way that the universe would remain static. After Hubble announced his conclusion that the universe was expanding, Einstein wrote that his cosmological constant was his "greatest blunder".

Density parameter

An important parameter in fate of the universe theory is the Density parameter, Omega (Ω), defined as the average matter density of the universe divided by a critical value of that density. This selects one of three possible geometries depending on whether Ω is equal to, less than, or greater than 1. These are called, respectively, the flat, open and closed universes. These three adjectives refer to the overall geometry of the universe, and not to the local curving of spacetime caused by smaller clumps of mass (for example, galaxies and stars). If the primary content of the universe is inert matter, as in the dust models popular for much of the 20th century, there is a particular fate corresponding to each geometry. Hence cosmologists aimed to determine the fate of the universe by measuring Ω, or equivalently the rate at which the expansion was decelerating.

Repulsive force

Starting in 1998, observations of supernovae in distant galaxies have been interpreted as consistent with a universe whose expansion is accelerating. Subsequent cosmological theorizing has been designed so as to allow for this possible acceleration, nearly always by involving dark energy, which in its simplest form is just a positive cosmological constant. In general dark energy is a catch-all term for any hypothesised field with negative pressure, usually with a density that changes as the universe expands.

Role of the shape of the universe



The current scientific consensus of most cosmologists is that the ultimate fate of the universe depends on its overall shape, how much dark energy it contains, and on the equation of state which determines how the dark energy density responds to the expansion of the universe.[citation needed] Recent observations have shown that, from 7.5 billion years after the Big Bang onwards, the expansion rate of the universe has actually been increasing, concurrent with the Open Universe theory, and marked 'Accelerating' on the graph.

Closed universe

If Ω > 1, then the geometry of space is closed like the surface of a sphere. The sum of the angles of a triangle exceeds 180 degrees and there are no parallel lines; all lines eventually meet. The geometry of the universe is, at least on a very large scale, elliptic.
In a closed universe lacking the repulsive effect of dark energy, gravity eventually stops the expansion of the universe, after which it starts to contract until all matter in the universe collapses to a point, a final singularity termed the "Big Crunch," by analogy with Big Bang. However, if the universe has a large amount of dark energy (as suggested by recent findings) then the expansion of the universe can continue forever – even if Ω > 1.


Open universe

If Ω<1,>
Even without dark energy, a negatively curved universe expands forever, with gravity barely slowing the rate of expansion. With dark energy, the expansion not only continues but accelerates. The ultimate fate of an open universe is either universal heat death, the "Big Freeze", or the "Big Rip," where the acceleration caused by dark energy eventually becomes so strong that it completely overwhelms the effects of the gravitational, electromagnetic and weak binding forces.
Conversely, a negative cosmological constant, which would correspond to a negative energy density and positive pressure, would cause even an open universe to recollapse to a big crunch. This option has been ruled out by observations.


Flat universe

If the average density of the universe exactly equals the critical density so that Ω=1, then the geometry of the universe is flat: as in Euclidean geometry, the sum of the angles of a triangle is 180 degrees and parallel lines continuously maintain the same distance.
Absent of dark energy, a flat universe expands forever but at a continually decelerating rate, with expansion asymptotically approaching a fixed rate. With dark energy, the expansion rate of the universe initially slows down, due to the effect of gravity, but eventually increases. The ultimate fate of the universe is the same as an open universe. In 2005, the Fermion-boson fate of universe theory was proposed, positing that much of the universe would ultimately be occupied by Bose-Einstein condensate and the fermion quasiparticle analog, perhaps resulting in an implosion.



No comments:

Post a Comment